Detailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis.

نویسندگان

  • Aude Antignac
  • Jean-Claude Rousselle
  • Abdelkader Namane
  • Agnès Labigne
  • Muhamed-Kheir Taha
  • Ivo G Boneca
چکیده

We used reverse-phase high pressure liquid chromatography (HPLC), matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and post source decay analysis (MALDI-PSD) to determine the muropeptide composition of the human pathogen Neisseria meningitidis. Structural assignment was determined for 28 muropeptide species isolated after HPLC separation and purification. Fourteen of these muropeptides were O-acetylated to different degrees. We identified the entire O-acetylation spectrum of dimers and trimers both in muropeptides and 1,6-anhydromuropeptides. On average, one of three disaccharides was O-acetylated. Furthermore, the degree of cross-linking of the N. meningitidis peptidoglycan was around 39% in all the strains analyzed. MALDI-PSD analysis of several muropeptide species indicated that meningococci only synthesize D-alanyl-meso-diaminopimelate cross-bridges. No muropeptides representative of covalent linkages of lipoproteins to the peptidoglycan could be identified, unlike in Escherichia coli. Finally, comparison of the muropeptide composition of penicillin-susceptible and penicillin-intermediate clinical strains of meningococci showed a positive correlation between the minimum inhibitory concentration (MIC) of penicillin G and the amount of muropeptides carrying an intact pentapeptide chain in the peptidoglycan. This suggests that reduced susceptibility to penicillin G in N. meningitidis is associated with a decrease in d,d-carboxypeptidase activity and/or D,D-transpeptidase activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Analysis and Modeling of ACP-MIP–PilQ Chimeric Antigen from Neisseria meningitidis Serogroup B

Background: Neisseria meningitidis, a life-threatening human pathogen with the potential to cause large epidemics, can be isolated from the nasopharynx of 5–15% of adults. The aim of the current study was to evaluate biophysical and biochemical properties and immunological aspects of chimeric acyl-carrier protein-macrophage infectivity potentiator protein-type IV pilus biogenesis protein ...

متن کامل

In silico Homology Modeling and Epitope Prediction of NadA as a Potential Vaccine Candidate in Neisseria meningitidis

Neisseria meningitidis is a facultative pathogen bacterium which is well founded with a number of adhesion molecules to facilitate its colonization in human nasopharynx track. Neisseria meningitidis is a major cause of mortality from sever meningococcal disease and septicemia. The Neisseria meningitidis adhesion, NadA, is a trimeric autotransporter adhesion molecule which is involved in cell ad...

متن کامل

Peptidoglycan fragment release from Neisseria meningitidis.

Neisseria meningitidis (meningococcus) is a symbiont of the human nasopharynx. On occasion, meningococci disseminate from the nasopharynx to cause invasive disease. Previous work showed that purified meningococcal peptidoglycan (PG) stimulates human Nod1, which leads to activation of NF-κB and production of inflammatory cytokines. No studies have determined if meningococci release PG or activat...

متن کامل

Neisseria gonorrhoeae Crippled Its Peptidoglycan Fragment Permease To Facilitate Toxic Peptidoglycan Monomer Release.

Neisseria gonorrhoeae (gonococci) and Neisseria meningitidis (meningococci) are human pathogens that cause gonorrhea and meningococcal meningitis, respectively. Both N. gonorrhoeae and N. meningitidis release a number of small peptidoglycan (PG) fragments, including proinflammatory PG monomers, although N. meningitidis releases fewer PG monomers. The PG fragments released by N. gonorrhoeae and ...

متن کامل

Development of a DNA Aptamer for Screening Neisseria meningitidis Serogroup B by Cell SELEX

Background: Artificial oligonucleotides like DNA or RNA aptamers can be used as biodiagnostic alternatives for antibodies to detect pathogens. Comparing to antibodies, artificial oligonucleotides are produced easily at lower costs and are more stable. Neisseria meningitidis, the causative agent of meningitis, is responsible for about 1% of infections in an epidemic period. Specific DNA aptamers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 34  شماره 

صفحات  -

تاریخ انتشار 2003